74LVC4066

Quad bilateral switch

Rev. 02 - 27 August 2007
Product data sheet

1. General description

The 74LVC4066 is a high-speed Si-gate CMOS device.
The 74LVC4066 provides four single pole, single-throw analog switch functions. Each switch has two input/output terminals (nY and nZ) and an active HIGH enable input (nE). When $n E$ is LOW, the analog switch is turned off.

Schmitt-trigger action at the enable inputs makes the circuit tolerant of slower input rise and fall times across the entire V_{CC} range from 1.65 V to 5.5 V .

2. Features

■ Wide supply voltage range from 1.65 V to 5.5 V
■ Very low ON resistance:

- 7.5Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
- 6.5Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- 6Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Switch current capability of 32 mA
- High noise immunity
- CMOS low-power consumption
- Direct interface TTL-levels

■ Latch-up performance exceeds 250 mA

- ESD protection:
- HBM JESD22-A114E exceeds 2000 V
- MM JESD22-A115-A exceeds 200 V

■ Enable inputs accept voltages up to 5 V

- Multiple package options
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

3. Ordering information

Table 1. Ordering information

Type number	Package				
	Temperature range	Name	Description	Version	
$74 \mathrm{LVC4066D}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1	
$74 \mathrm{LVC4066PW}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP14	plastic thin small outline package; 14 leads; body width 4.4 mm	SOT402-1	
$74 \mathrm{LVC4066BQ}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85 \mathrm{~mm}$	SOT762-1	

4. Functional diagram

Fig 1. Logic symbol

(a)

(b)

Fig 2. Logic symbol (IEEE/IEC)

Fig 3. Logic diagram (one switch)

5. Pinning information

5.1 Pinning

Fig 4. Pin configuration for SO14 and TSSOP14

(1) The die substrate is attached to this pad using conductive die attach material. It can not be used as a supply pin or input.

Fig 5. Pin configuration for DHVQFN14

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
$1 Y$	1	independent input/output
$1 Z$	2	independent output/input
$2 Z$	3	independent output/input
$2 Y$	4	independent input/output
$2 E$	5	enable input (active HIGH)
$3 E$	6	enable input (active HIGH)
GND	7	ground (0 V)
$3 Y$	8	independent input/output
$3 Z$	9	independent output/input
$4 Z$	10	independent output/input
$4 Y$	11	independent input/output
$4 E$	12	enable input (active HIGH)
$1 E$	13	enable input (active HIGH)
$V C C$	14	supply voltage

6. Functional description

Table 3. Function table[1]

Input $\mathbf{n E}$	Switch
L	OFF
H	ON

[1] $\mathrm{H}=\mathrm{HIGH}$ voltage level;
$\mathrm{L}=\mathrm{LOW}$ voltage level.

7. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{C C}$	supply voltage		-0.5	+6.5	V
V_{1}	input voltage		[1] -0.5	+6.5	V
I_{K}	input clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}<\mathrm{V}_{C C}+0.5 \mathrm{~V}$	-50	-	mA
$\mathrm{I}_{\text {SK }}$	switch clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}<\mathrm{V}_{C C}+0.5 \mathrm{~V}$	-	± 50	mA
$\mathrm{V}_{\text {SW }}$	switch voltage	enable and disable mode	[2] -0.5	+6.5	V
$I_{\text {SW }}$	switch current	$-0.5<\mathrm{V}_{\text {SW }}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 50	mA
I_{CC}	supply current		-	100	mA
$\mathrm{I}_{\text {GND }}$	ground current		-100	-	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	[3] -	500	mW

[1] The minimum input voltage rating may be exceeded if the input current rating is observed.
[2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed.
[3] For SO14 packages: above $70^{\circ} \mathrm{C}$ derate linearly with $8 \mathrm{~mW} / \mathrm{K}$.
For (T)SSOP14 packages: above $60^{\circ} \mathrm{C}$ derate linearly with $5.5 \mathrm{~mW} / \mathrm{K}$.
For DHVQFN14 packages: above $60^{\circ} \mathrm{C}$ derate linearly with $4.5 \mathrm{~mW} / \mathrm{K}$.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{CC}	supply voltage		1.65	-	5.5	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	-	5.5	V
$\mathrm{~V}_{\mathrm{SW}}$	switch voltage	[1] 0	-	V_{CC}	V	
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature		-40	-	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.7 V	$\underline{[2]}-$	-	20	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	$\underline{[2]}-$	-	10	$\mathrm{~ns} / \mathrm{V}$

[1] To avoid sinking GND current from terminal nZ when switch current flows in terminal nY, the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal nZ , no GND current will flow from terminal nY . In this case, there is no limit for the voltage drop across the switch.
[2] Applies to control signal levels.

9. Static characteristics

Table 6. Static characteristics
At recommended operating conditions voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
				Min	Typ[1]	Max	Min	Max	
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V		$0.65 \mathrm{~V}_{\text {CC }}$	-	-	$0.65 \mathrm{~V}_{\text {CC }}$	-	V
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V		1.7	-	-	1.7	-	V
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.6 V		2.0	-	-	2.0	-	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V		$0.7 \mathrm{~V}_{\mathrm{CC}}$	-	-	$0.7 \mathrm{~V}_{\text {CC }}$	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V		-	-	$0.35 \mathrm{~V}_{\text {cc }}$	-	$0.35 V_{\text {cc }}$	V
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V		-	-	0.7	-	0.7	V
		$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ to 3.6 V		-	-	0.8	-	0.8	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V		-	-	$0.3 \mathrm{~V}_{\mathrm{CC}}$	-	$0.3 \mathrm{~V}_{\mathrm{CC}}$	V
I	input leakage current	$\begin{aligned} & \text { pin } n E ; V_{C C}=5.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V} \text { or } \mathrm{GND} \end{aligned}$	[2]	-	± 0.1	± 5	-	± 20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; } \\ & \text { see } \underline{\text { Figure } 6} \end{aligned}$	[2]	-	± 0.1	± 5	-	± 20	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; } \\ & \text { see Figure } 7 \end{aligned}$	[2]	-	± 0.1	± 5	-	± 20	$\mu \mathrm{A}$
$I_{\text {CC }}$	supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\mathrm{SW}}=\mathrm{GND} \text { or } \\ & \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \end{aligned}$	[2]	-	0.1	10	-	40	$\mu \mathrm{A}$
$\Delta l_{\text {CC }}$	additional supply current	$\begin{aligned} & \operatorname{pin} n E ; V_{I}=V_{C C}-0.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{SW}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	[2]	-	5	500	-	5000	$\mu \mathrm{A}$

Table 6. Static characteristics ...continued
At recommended operating conditions voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
			Min	Typ ${ }^{[1]}$	Max	Min	Max	
C_{1}	input capacitance		-	12.5	-	-	-	pF
$\mathrm{C}_{\text {S(OFF) }}$	OFF-state capacitance		-	8.0	-	-	-	pF
$\mathrm{C}_{\text {S(ON) }}$	ON-state capacitance		-	14.0	-	-	-	pF

[1] All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
[2] These typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.

9.1 Test circuits

$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND and $\mathrm{V}_{\mathrm{O}}=\mathrm{GND}$ or V_{CC}.
Fig 6. Test circuit for measuring OFF-state leakage current

$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND and $\mathrm{V}_{\mathrm{O}}=$ open circuit.
Fig 7. Test circuit for measuring ON -state leakage current

9.2 ON resistance

Table 7. ON resistance
At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Figure 9 to Figure 14.

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Typ[1]	Max	Min	Max	
$\mathrm{R}_{\text {ON(peak) }}$	ON resistance (peak)	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}; see Figure 8						
		$\begin{aligned} & \mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$	-	34.0	130	-	195	Ω
		$\mathrm{I}_{\mathrm{SW}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	12.0	30	-	45	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	10.4	25	-	38	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	7.8	20	-	30	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	6.2	15	-	23	Ω

Table 7. ON resistance ...continued
At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Figure 9 to Figure 14.

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Typ[1]	Max	Min	Max	
$\mathrm{R}_{\mathrm{ON}(\text { rail }}$	ON resistance (rail)	$V_{1}=$ GND; see Figure 8						
		$\begin{aligned} & \mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$	-	8.2	18	-	27	Ω
		$\mathrm{I}_{\mathrm{SW}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	7.1	16	-	24	Ω
		$\mathrm{I}_{\text {SW }}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	6.9	14	-	21	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	6.5	12	-	18	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	5.8	10	-	15	Ω
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$; see Figure 8						
		$\begin{aligned} & \mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$	-	10.4	30	-	45	Ω
		$\mathrm{I}_{\text {SW }}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	7.6	20	-	30	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	7.0	18	-	27	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	6.1	15	-	23	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	4.9	10	-	15	Ω
$\mathrm{R}_{\text {ON(flat) }}$	ON resistance (flatness)	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}	[2]					
		$\begin{aligned} & \mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$	-	26.0	-	-	-	Ω
		$\mathrm{I}_{\text {SW }}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	5.0	-	-	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$	-	3.5	-	-	-	Ω
		$\mathrm{I}_{\mathrm{Sw}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	-	2.0	-	-	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	1.5	-	-	-	Ω

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and nominal V_{CC}.
[2] Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical V_{CC} and temperature.

9.3 ON resistance test circuit and graphs

$\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{SW}} / I_{\mathrm{SW}}$.

Fig 8. Test circuit for measuring ON resistance

(1) $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$.
(2) $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$.
(3) $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$.
(4) $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.
(5) $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

Fig 9. Typical ON resistance as a function of input voltage; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$.

Fig 11. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 12. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$.

Fig 13. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 14. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

10. Dynamic characteristics

Table 8. Dynamic characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for load circuit Figure 17.

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and nominal V_{CC}.
[2] $t_{p d}$ is the same as $t_{\text {PLH }}$ and $t_{\text {PHL }}$.
[3] Propagation delay is the calculated RC time constant of the typical ON resistance of the switch and the specified capacitance when driven by an ideal voltage source (zero output impedance).
[4] $t_{\text {en }}$ is the same as $t_{\text {PZH }}$ and $t_{\text {PZL }}$.
[5] $t_{\text {dis }}$ is the same as tpLz and tpHz.
[6] $\mathrm{C}_{P \mathrm{D}}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left\{\left(C_{L}+C_{S(O N)}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{S}(\mathrm{ON})}=$ maximum ON -state switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\mathrm{N}=$ number of inputs switching;
$\Sigma\left\{\left(\mathrm{C}_{\mathrm{L}}+\mathrm{C}_{\mathrm{S}(\mathrm{ON})}\right) \times \mathrm{V}_{\mathrm{CC}}{ }^{2} \times \mathrm{f}_{\mathrm{O}}\right\}=$ sum of the outputs.

10.1 Waveforms and test circuit

Measurement points are given in Table 9.
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 15. Input ($\mathrm{n} Y$ or nZ) to output (nZ or nY) propagation delays

Measurement points are given in Table 9.
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 16. Enable and disable times

Table 9. Measurement points

Supply voltage	Input	Output		
$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{X}}$	$\mathbf{V}_{\mathbf{Y}}$
1.65 V to 1.95 V	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$
2.3 V to 2.7 V	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$
2.7 V	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$
3.0 V to 3.6 V	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$
4.5 V to 5.5 V	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$

Test data is given in Table 10.
Definitions test circuit:
$R_{T}=$ Termination resistance should be equal to output impedance Z_{o} of the pulse generator.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{L}=$ Load resistance.
$\mathrm{V}_{\mathrm{EXT}}=$ External voltage for measuring switching times.
Fig 17. Load circuit for switching times

Table 10. Test data

Supply voltage	Input		Load		$\mathrm{V}_{\text {EXT }}$		
$\mathrm{V}_{\text {cc }}$	$\mathrm{V}_{\mathbf{I}}$	$\mathbf{t r}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	C_{L}	$\mathbf{R}_{\mathbf{L}}$	$t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	$\mathbf{t}_{\text {PZL }}$, tPLZ
1.65 V to 1.95 V	$V_{C C}$	$\leq 2.0 \mathrm{~ns}$	30 pF	$1 \mathrm{k} \Omega$	open	GND	$2 V_{\text {cc }}$
2.3 V to 2.7 V	$\mathrm{V}_{\text {cc }}$	$\leq 2.0 \mathrm{~ns}$	30 pF	500Ω	open	GND	$2 V_{c c}$
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500Ω	open	GND	6 V
3.0 V to 3.6 V	2.7 V	$\leq 2.5 \mathrm{~ns}$	50 pF	500Ω	open	GND	6 V
4.5 V to 5.5 V	$\mathrm{V}_{\text {CC }}$	≤ 2.5 ns	50 pF	500Ω	open	GND	$2 \mathrm{~V}_{\text {cc }}$

10.2 Additional dynamic characteristics

Table 11. Additional dynamic characteristics
At recommended operating conditions; voltages are referenced to GND (ground $=0 \mathrm{~V}$); $T_{a m b}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
THD	total harmonic distortion	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz} ; \\ & \text { see Figure } 18 \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	0.032	-	\%
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	0.008	-	\%
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	-	0.006	-	\%
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	0.005	-	\%
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz} ; \\ & \text { see Figure } 18 \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	0.068	-	\%
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	0.009	-	\%
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	-	0.008	-	\%
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	0.006	-	\%

Table 11. Additional dynamic characteristics ...continued At recommended operating conditions; voltages are referenced to GND (ground $=0 \mathrm{~V}$); $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	$\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ;$ $\text { see Figure } 19$				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	170	-	MHz
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	210	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	-	212	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	215	-	MHz
		$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 19				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	> 500	-	MHz
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	> 500	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	-	> 500	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	> 500	-	MHz
$\alpha_{\text {iso }}$	isolation (OFF-state)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \\ & \text { see Figure } 20 \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-46	-	dB
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	-46	-	dB
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	-	-46	-	dB
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	-46	-	dB
		$R_{L}=50 \Omega ; C_{L}=5 \mathrm{pF} ; f_{i}=1 \mathrm{MHz} ; \text { see }$ Figure 20				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-42	-	dB
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	-42	-	dB
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	-	-42	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-42	-	dB
$\mathrm{V}_{\text {ct }}$	crosstalk voltage	between digital inputs and switch; $R_{L}=600 \Omega ; C_{L}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns}$; see Figure 21				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	69	-	mV
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	87	-	mV
		$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$	-	156	-	mV
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	302	-	mV
Xtalk	crosstalk	between switches; $R_{L}=600 \Omega$; $C_{L}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; see Figure 22				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-58	-	dB
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	-58	-	dB
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	-	-58	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-58	-	dB
		between switches; $\mathrm{R}_{\mathrm{L}}=50 \Omega$; $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; $\mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; see Figure 22				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-58	-	dB
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	-58	-	dB
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	-	-58	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-58		dB

Table 11. Additional dynamic characteristics ...continued At recommended operating conditions; voltages are referenced to GND (ground $=0 \mathrm{~V}$); $T_{a m b}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$Q_{\text {inj }}$	charge injection	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF} ; \mathrm{V}_{\text {gen }}=0 \mathrm{~V} ; \mathrm{R}_{\text {gen }}=0 \Omega ; \\ & \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \text { see Figure } 23 \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	-	3.3	-	pC
		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	-	4.1	-	pC
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	5.0	-	pC
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	6.4	-	pC
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	7.5	-	pC

10.2.1 Test circuits

Test conditions:

$V_{C C}=1.65 \mathrm{~V}: \mathrm{V}_{\mathrm{i}}=1.4 \mathrm{~V}(\mathrm{p}-\mathrm{p})$.
$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}: \mathrm{V}_{\mathrm{i}}=2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$.
$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}: \mathrm{V}_{\mathrm{i}}=2.5 \mathrm{~V}(\mathrm{p}-\mathrm{p})$.
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}: \mathrm{V}_{\mathrm{i}}=4 \mathrm{~V}(\mathrm{p}-\mathrm{p})$.
Fig 18. Test circuit for measuring total harmonic distortion

Adjust f_{i} voltage to obtain 0 dBm level at output. Increase f_{i} frequency until dB meter reads -3 dB .
Fig 19. Test circuit for measuring the frequency response when switch is in ON-state

Adjust f_{i} voltage to obtain 0 dBm level at input.
Fig 20. Test circuit for measuring isolation (OFF-state)

Fig 21. Test circuit for measuring crosstalk voltage (between digital inputs and switch)

$20 \log _{10}\left(\mathrm{~V}_{\mathrm{O} 2} / \mathrm{V}_{\mathrm{O} 1}\right)$ or $20 \log _{10}\left(\mathrm{~V}_{\mathrm{O} 1} / \mathrm{V}_{\mathrm{O} 2}\right)$.
Fig 22. Test circuit for measuring crosstalk between switches

$\mathrm{Q}_{\mathrm{inj}}=\Delta \mathrm{V}_{\mathrm{O}} \times \mathrm{C}_{\mathrm{L}}$.
$\Delta \mathrm{V}_{\mathrm{O}}=$ output voltage variation.
$R_{\text {gen }}=$ generator resistance.
$V_{\text {gen }}=$ generator voltage .
Fig 23. Test circuit for measuring charge injection

11. Package outline

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{aligned} & \hline 8.75 \\ & 8.55 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	1.0	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	8°
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.35 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.024 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	0°

Note

1. Plastic or metal protrusions of $0.15 \mathrm{~mm}(0.006 \mathrm{inch})$ maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT108-1	076E06	MS-012		\square ¢	$\begin{aligned} & 99-12-27 \\ & 03-02-19 \end{aligned}$

Fig 24. Package outline SOT108-1 (SO14)
74LVC4066_2

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.1	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.80 \end{aligned}$	0.25	$\begin{aligned} & 0.30 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.3 \end{aligned}$	0.65	6.6	1	$\begin{aligned} & 0.75 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.72 \\ & 0.38 \end{aligned}$	$8^{\circ}{ }^{\circ}$

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT402-1		MO-153		-	$\begin{aligned} & -99-12-27 \\ & 03-02-18 \end{aligned}$

Fig 25. Package outline SOT402-1 (TSSOP14)
74LVC4066_2

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85 \mathrm{~mm}$

Fig 26. Package outline SOT762-1 (DHVQFN14)
74LVC4066_2

12. Abbreviations

Table 12. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
TTL	Transistor-Transistor Logic
HBM	Human Body Model
ESD	ElectroStatic Discharge
MM	Machine Model
DUT	Device Under Test

13. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC4066_2	20070827	Product data sheet		74LVC4066
Modifications:	- The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. - Legal texts have been adapted to the new company name where appropriate. - Section 2 "Features": Added: Wide supply voltage range from 1.65 V to 5.5 V Added: Switch handling capability of 32 mA Added: Multiple package options Deleted: Complies with JEDESD-8 standards Added: Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Added: Enable input accepts voltages up to 5 V - Section 7 "Limiting values" Added: Derating factors of the applicable packages - Section 9 "Static characteristics" Changed: Maximum values of ON resistance (peak) parameters and graphics. - Section 10 "Dynamic characteristics": Changed: Typical values of the charge injection.			
	20030812	Product specification		

14. Legal information

14.1 Data sheet status

Document status $\underline{[1][2]}$	Product status[]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com

14.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

14.3 Disclaimers

General - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.
Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or
malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.
Terms and conditions of sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.
No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

16. Contents

1 General description............................ 1
2 Features . 1
3 Ordering information. 2
4 Functional diagram . 2
5 Pinning information. 3
5.1 Pinning . 3
5.2 Pin description . 3

6 Functional description 4
7 Limiting values. 4
8 Recommended operating conditions. 5
9 Static characteristics. 5
9.1 Test circuits . 6
9.2 ON resistance . 6
9.3 ON resistance test circuit and graphs 8

10 Dynamic characteristics 10
10.1 Waveforms and test circuit 11
10.2 Additional dynamic characteristics 12
10.2.1 Test circuits . 14

11 Package outline . 17
12 Abbreviations................................... . 20
13 Revision history . 20
14 Legal information. 21
14.1 Data sheet status . 21
14.2 Definitions . 21
14.3 Disclaimers . 21
14.4 Trademarks. 21

15 Contact information. 21

